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Abstract—This paper presents a modified version of the
method of equal areas (MEA) for designing simulation models
for frequency non-selective mobile fading channels under non-
isotropic scattering conditions. The proposed method, called
modified MEA (MMEA), is well suited for channel simulators
based on a finite sum of complex sinusoids. The combination
of the MMEA with the principle of set partitioning is also
proposed here as an efficient way to improve the performance
of the simulator and to reduce the computational costs. Such
a combination results in a new parameter computation method
called MMEA with set partitioning (MMEA-SP). The MMEA
and the MMEA-SP are quite general and can be applied on any
given distribution of the angle of arrival (AOA). However, to
exemplify the good performance of both methods, it is assumed
that the AOA follows the von Mises distribution. The obtained
results demonstrate that the two proposed methods approximate
the autocorrelation function (ACF) of non-isotropic scattering
channels with high precision.

Keywords—Channel simulators, deterministic channel modeling,
mobile fading channels, non-isotropic scattering, set partitioning,
sum-of-sinusoids principle.

I. INTRODUCTION

The sum-of-sinusoids (SOS) principle introduced by Rice
[1], [2] for the modeling of colored Gaussian processes has
found widespread acceptance as an adequate basis for the
design of simulation models for mobile fading channels [3]–
[6]. SOS-based simulators can generate temporally correlated
sequences with reasonably low computational costs. Owing to
this characteristic, this kind of simulation models turn out to
be especially suitable for simulating frequency non-selective
wireless propagation channels with specified autocorrelation
functions (ACFs). Furthermore, the SOS principle has been
used to simulate efficiently frequency selective [7], [8] and
spatial selective wireless channels [9]–[11].

The design of accurate and efficient SOS-based simulators
for isotropic scattering channels has been the topic of research
of several papers [3]–[9]. However, despite its importance, the
SOS-based simulation of wireless channels under the more
realistic scenario of non-isotropic scattering has not received
much attention so far. To close this gap, we propose in this
paper a modified version of the method of equal areas (MEA)

[3] which allows the design of SOS-based simulation models
for mobile fading channels under non-isotropic scattering
conditions. We also explain how to combine the proposed
method, called modified MEA (MMEA), with the principle
of set partitioning to reduce the computational costs associ-
ated with the generation of high-quality channel waveforms.
The parameter computation method that results from such a
combination is called MMEA with set partitioning (MMEA-
SP). The idea of applying set partitioning to the simulation
of mobile fading channels was originally proposed in [12]
for the particular case of isotropic scattering channels. In this
contribution, we extend the idea with respect to all kinds of
non-isotropic scattering scenarios. We stress that the MMEA
and the MMEA-SP can be applied on any given distribution
of the angle of arrival (AOA). Nevertheless, to demonstrate
the good performance of these two methods, we present some
exemplary numerical results by assuming that the AOA is von
Mises distributed [13].

In a related paper [14], we explain how to compute the simu-
lation model’s parameters of non-isotropic scattering channels
with given asymmetrical Doppler power spectra by using
the MMEA and the MMEA-SP. The differences between the
approach described here and that in [14] will be highlighted.

The rest of the paper is organized as follows. In Section II,
we give a brief description of the reference model and the
SOS-based simulation model. In Section III, we present the
MMEA. In Section IV, we explain how to combine the MMEA
with the principle of set partitioning. In Section V, we discuss
the differences between the MMEA-SP and other similar
parameter computation methods, such as the one described
in [14]. Finally, we present our conclusions in Section VI.

II. REFERENCE MODEL AND SIMULATION MODEL

A. The Reference Model

Our reference model is a frequency non-selective Gaussian
channel, which characterizes a two-dimensiontional propa-
gation environment, where the scattering is not necessarily
isotropic. Invoking the central limit theorem [15], we can
express such a channel model as an infinite sum of complex
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harmonic functions in the form [12], [13]

µ(t) = lim
N→∞

σ√
N

N∑
n=1

exp
{
j
(
2πfmaxcos(αn)t + θn

)}
(1)

where each complex harmonic function represents a propa-
gation path, fmax is the maximum Doppler frequency, αn is
a random variable denoting the AOA of the nth path, and
the phases θn are independent identically distributed random
variables, each having a uniform distribution over [−π, π). An
isotropic scattering channel results from (1) if the AOAs αn

are uniformly distributed over the interval [−π, π). On the
other hand, µ(t) describes a non-isotropic scattering channel
if the AOAs αn exhibit a nonuniform distribution.

B. The Simulation Model

We can observe from (1) that a hardware and/or software
realization of the complex Gaussian process µ(t) is not possi-
ble, since µ(t) comprises an infinite sum of complex harmonic
functions. Fortunately, we can satisfactorily approximate the
reference model, characterized by µ(t), by a stochastic process

µ̂(t) =
σ√
N

N∑
n=1

exp
{
j
(
2πfmaxcos(α̃n)t + θn

)}
(2)

where the number of harmonic functions is limited, usually
N ≈ 20, and the AOAs α̃n are realizations of the random
variables αn. The statistical properties of µ̂(t), such as the
probability density function (PDF) and level-crossing rate, are
analyzed in [16]. Here, we only need to know that the density
of ζ̂(t) = |µ̂(t)| is close to the Rayleigh distribution if N ≥
20. Furthermore, a deterministic simulator results from the
stochastic process µ̂(t) if we take single outcomes θ̃n of the
random phases θn. By doing so, we obtain a deterministic
process (sample function) given by

µ̃(t) =
σ√
N

N∑
n=1

exp
{
j
(
2πfnt + θ̃n

)}
(3)

which acts as simulation model in this paper. The Doppler
frequencies fn are defined as

fn := fmaxcos(α̃n), n = 1, . . . , N. (4)

The ACF of µ̃(t) is given by

r̃µµ(τ) := lim
T→∞

1
2T

∫ T

−T

[
µ̃(t)

]∗
µ̃(t + τ)dt (5)

=
σ2

N

N∑
n=1

exp
{
j2πfnτ

}
. (6)

Since we are dealing with complex Gaussian processes, the
performance evaluation of the deterministic SOS-based sim-
ulation model reduces to the investigation of the quality of
the approximation r̃µµ(τ) ≈ rµµ(τ) within [0, τmax], where
rµµ(τ) := E{µ∗(t)µ(t+τ)} is the ACF of the reference model
µ(t) and τmax defines the length of the interval over which
the approximation is of interest. The notation E{·} stands
for the statistical expectation, while {·}∗ denotes complex

conjugation. The simulation parameters α̃n, or equivalently
fn, must therefore be computed in such a way that the ACF
r̃µµ(τ) of the simulation model fits well to the ACF rµµ(τ)
of the reference model.

III. THE PARAMETER COMPUTATION METHOD

A. The MMEA

The problem consists in finding the set of AOAs {α̃n}N
n=1

of the simulation model given by µ̃(t) in (3), which pro-
vides a reasonably good approximation r̃µµ(τ) ≈ rµµ(τ),
τ ∈ [0, τmax], for a given value of N (N ≥ 20). We will
not pay attention to the phases θ̃n, since the ACF r̃µµ(τ) of
the simulation model does not depend on them [see (6)].

To cope with the parameter computation problem described
above, we recall that the ACF rµµ(τ) of the reference model
µ(t) depends on the PDF pα(α) of the AOA α of the received
signal [17]. Taking this fact into account, we use the following
criterion to compute the AOAs α̃n of the simulation model:∫ α̃n

α̃n−1

pα(α)dα =
1
N

, α̃n ∈ [−π, π) (7)

for n = 1, . . . , N , where α̃0 = −π. To exhaust the potential
that the simulation model µ̃(t) offers, it is necessary to meet
the following conditions:

(i) fn �= fm, m �= n (8)

(ii) fn �= 0, ∀n. (9)

Condition (i) guarantees N effective harmonic functions
for the simulation model µ̃(t), while Condition (ii) assures
that the mean value of µ̃(t) equals zero. Given that fn =
fmax cos(α̃n), it follows that

to meet (i) : α̃n �= −α̃m, ∀n,m (10)

to meet (ii) : α̃n �= ±π/2, ∀n. (11)

Condition (i) is not satisfied if the PDF pα(α) is symmetric
with respect to the origin and N is an even number. Fur-
thermore, Condition (ii) does not hold if pα(α) is uniform
over [−π, π). Therefore, to guarantee the fulfillment of the
inequalities in (10) and (11) under such a circumstances, we
impose the initial condition∫ α̃1

α̃0

pα(α)dα =
1
N

− 1
4N

. (12)

Consider now the cumulative distribution function Fα(α)
of the AOA α, which is defined as

Fα(x) :=
∫ x

−∞
pα(α)dα. (13)

Then, using (7) and (12) to evaluate Fα(α̃n), we obtain

Fα(α̃n) =
n∑

m=1

∫ α̃m

α̃m−1

pα(α)dα (14)

=
1
N

(
n − 1

4

)
. (15)
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Hence, the parameters α̃n can be obtained by solving
∫ α̃n

−π

pα(α)dα =
1
N

(
n − 1

4

)
, n = 1, . . . , N (16)

by using numerical root-finding techniques. If the inverse
function F−1

α of Fα exists, then we can compute the AOAs
α̃n in closed form in accordance to

α̃n = F−1
α

[
1
N

(
n − 1

4

)]
, n = 1, . . . , N. (17)

We call the parameter computation method described in this
section the MMEA, since it has been inspired by the MEA
proposed in [3]. It is important to mention, however, that the
original MEA and the MMEA have been conceived for the
simulation of different propagation scenarios, and therefore
have dissimilar characteristics. The difference between the
MEA and the MMEA will be explained in more detail in
Section V.

B. Numerical Results for the von Mises Distribution

The von Mises distribution has been shown to be an
adequate model for the AOA statistics of both isotropic and
non-isotropic scattering channels [13]. This PDF is given by

pα(α) =
exp{κcos(α − α0)}

2πI0(κ)
, α ∈ [−π, π) (18)

where α0 ∈ [−π, π) is the mean AOA, κ ≥ 0 is a parameter
that determines the angular spread, and the symbol I0(·) stands
for the zeroth order modified Bessel function. By adopting the
von Mises PDF for the reference model µ(t), then its ACF
rµµ(τ) can be expressed as [13]

rµµ(τ) =
I0

(√
κ2 − (2πfmaxτ)2 + j4πκfmaxcos(α0)τ

)
I0(κ)

.

(19)

If κ = 0, then the ACF rµµ(τ) reduces to the well-known
ACF rµµ(τ) = J0(2πfmaxτ) characterizing isotropic scattering
channels [17], where J0(·) is the zeroth order Bessel function
of the first kind.

Figure 1 shows a comparison between the ACF rµµ(τ)
given in (19) for µ(t) and the ACF r̃µµ(τ) of the simulation
model µ̃(t) designed by using the MMEA with N = 20 for
various values of α0 and κ. We computed the AOAs α̃n by
using numerical methods to solve (16). From Fig. 1, we can
conclude that the MMEA provides a good approximation of
the ACF rµµ(τ) of the reference model. The MMEA has an
excellent performance indeed when the scattering is isotropic
(κ = 0) and τ ∈ [0, N/(4fmax)]. It is interesting to note that
in case of isotropic scattering (κ = 0), the MMEA reduces
to the method of exact Doppler spread (MEDS) [4]. Also,
it is worth to mention that the quality of the approximation
rµµ(τ) ≈ r̃µµ(τ) can significantly be improved for any κ ≥ 0
by increasing the number of complex harmonic functions N .
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Fig. 1. Comparison between the absolute value of the ACF |rµµ(τ)| of the
reference model and the absolute value of the ACF |r̃µµ(τ)| of the simulation
model by using the MMEA with N = 20 for various values of α0 and κ.

IV. EFFICIENT SIMULATION OF HIGH-QUALITY CHANNEL

WAVEFORMS

It was recently shown in [12] that a simulation approach
based on set partitioning allows to improve the performance
of deterministic SOS-based simulation models simply by
averaging across several simulation runs. This approach is
quite advantageous, since the performance of deterministic
SOS-based simulators could only be improved until then by
increasing the number of sinusoids. The method presented in
[12] was originally proposed for the simulation of isotropic
scattering environments. In this section, we generalize the
procedure with respect to all kinds of non-isotropic scattering
scenarios.

A. The MMEA-SP

Following the approach proposed in [12], we have to
generate K uncorrelated channel waveforms

µ̃(k)(t) =
σ√
N

N∑
n=1

exp
{
j(2πf (k)

n t + θ̃(k)
n )

}
(20)
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with f
(k)
n = fmaxcos(α̃(k)

n ), such that the sample mean ACF

r̄µµ(τ) :=
1
K

K∑
k=1

r̃(k)
µµ (τ) (21)

equals the ACF r̃µµ(τ) of a single waveform µ̃(t) composed
by NK complex harmonic functions. In (21), r̃

(k)
µµ (τ) is the

ACF of the kth waveform µ̃(k)(t). In other words, we have to
generate K complex waveforms µ̃(k)(t) such that

r̄µµ(τ) = r̃µµ(τ), −∞ ≤ τ ≤ ∞ (22)

r̃(k,l)
µµ (τ) = 0, k �= l (23)

where

r̃(k,l)
µµ (τ) := lim

T→∞
1

2T

∫ T

−T

[
µ̃(k)(t)

]∗
µ̃(l)(t + τ)dt (24)

is the CCF of µ̃(k)(t) and µ̃(l)(t). Note that the ACF r̃
(k)
µµ (τ)

of µ̃(k)(t) results from (24) if k = l.
By assuming that f

(k)
n �= f

(k)
m for all k and n �= m, the

parameter computation problem at hand reduces to finding K

sets {α̃(k)
n }N

n=1 that satisfy the following conditions:

(iii) {α̃(k)
n }N

n=1 ∩ {α̃(l)
m }N

m=1 = ∅, k �= l (25)

(iv)
K⋃

k=1

{α̃(k)
n }N

n=1 = {α̃n}M=NK
n=1 (26)

where ∅ is the empty set, and {α̃n}M=NK
n=1 is the set composed

by the AOAs α̃n of a waveform µ̃(t) obtained by using the
MMEA with M = NK complex harmonic functions.

The conditions stated in (25) and (26) are fulfilled if the
AOAs α̃

(k)
n of the K channel waveforms µ̃(k)(t) are computed

in accordance to

α̃(k)
n = α̃k+(n−1)K , n = 1, . . . , N, k = 1, . . . ,K. (27)

In this manner, we also assure that the area under the PDF
pα(α) equals 1/N within

[
α̃

(k)
n , α̃

(k)
n+1

)
for n = 1, . . . , N − 1.

From (27) and (16), we have

Fα(α̃(k)
n ) =

∫ α̃k+(n−1)K

−π

pα(α)dα

=
1

KN

(
k + (n − 1)K − 1

4

)
(28)

for n = 1, . . . , N , and k = 1, . . . ,K. The previous result can
be rewritten in the form∫ α̃(k)

n

−π

pα(α)dα =
1
N

(
n − 1

4

)
+ εk (29)

where

εk =
4k − 3K − 1

4KN
(30)

is called the angle of rotation. Then, we can compute the AOAs
α̃

(k)
n of the kth waveform µ̃(k)(t) by solving (29) with the aid

of numerical root-finding algorithms. This parameter compu-
tation method establishes the so-called MMEA-SP. Notice that
the MMEA-SP reduces to the MMEA if K = 1, i.e., εk = 0.

In the special case where the inverse F−1
α of Fα exists, the

AOAs α̃
(k)
n can be obtained from the closed-form solution

α̃(k)
n = F−1

α

(
1
N

[
n − 1

4

]
+ εk

)
. (31)

B. Numerical Results for the von Mises Distribution

Figure 2 shows a comparison between the sample mean
ACF r̄µµ(τ) obtained by using the MMEA-SP with N = 20
and K = 4, and the ACF rµµ(τ) given in (19) for the reference
model. We considered for the simulations the same values of
α0 and κ as in Section III.B. It is evident that the results
presented in Figs. 2(a) and 2(b) outperform by far those in
Figs. 1(a) and 1(b), respectively. Indeed, the sample mean ACF
r̄µµ(τ) show less deviations from rµµ(τ) than the ACF r̃µµ(τ)
of a single waveform obtained by using the MMEA with N =
20 [cf. Fig. 1]. Interestingly, a quick inspection of the isotropic
scattering case (κ = 0) reveals that the MMEA-SP yields an
excellent approximation to the ACF rµµ(τ) of the reference
model for an interval K times larger than in the corresponding
example presented in Fig. 1(a) for the MMEA.

V. DIFFERENCES BETWEEN THE MMEA-SP AND SIMILAR

PARAMETER COMPUTATION METHODS

In a related paper [14], we proposed the MMEA-SP as an
efficient method to compute the Doppler frequencies f

(k)
n of

the kth waveform µ̃(k)(t) by solving
∫ f(k)

n

−fmax

Sµµ(f)df =
1
N

(
n − 1

2

)
+ξk, n = 1, . . . , N (32)

where Sµµ(f) is a given bandlimited (normalized) Doppler
power spectrum of the reference model µ(t), and ξk is defined
as

ξk =
1

KN

(
k − K + 1

2

)
, k = 1, . . . ,K. (33)

Since the Doppler frequencies f
(k)
n are related to the AOAs

α̃
(k)
n via f

(k)
n = fmax cos(α̃(k)

n ), one can show that the AOAs
α̃

(k)
n computed from (29) result in the same values for f

(k)
n as

the solution of (32). However, the Doppler frequencies f
(k)
n

computed by using (32) do not produce the same AOAs as
those obtained from (29). This is because the AOAs α̃

(k)
n =

arccos(f (k)
n /fmax) are confined on the interval [0, π), while

the AOAs obtained from (29) are located in the whole range
[−π, π). This difference explains the discrepancy between the
right-hand-side terms of the expression in (32) and (29).

If the PDF pα(α) is symmetric with respect to the origin,
then we can compute the AOAs α̃

(k)
n from pα(α) by consid-

ering only the range [0, π), because the rest of the interval is
redundant (since the interval [−π, 0) provides us with the same
information as [0, π)). For this particular case, the integral in
(29) can be redefined to produce the same result as the integral
in (32).

Actually, if the PDF pα(α) is uniformly distributed over
[−π, π), which means that the scattering is isotropic, then the
AOAs of the simulation model can accurately be computed
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(b) κ = 10, α0 = {0◦, 30◦, 45◦, 90◦}

Reference model
Simulation model: MMEA-SP, N = 20, K = 4
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Fig. 2. Comparison between the absolute value of the ACF |rµµ(τ)| of the
reference model and the absolute value of the sample mean ACF |r̄µµ(τ)| of
the simulation model by using the MMEA-SP with N = 20 and K = 4 for
various values of α0 and κ.

by considering a shorter range [0, π/2). This characteristic
is exploited by the original MEA [3] and by the method
proposed in [12] to make an efficient use of the number of
harmonic functions. Unfortunately, such an interval is too short
in general for the adequate characterization of non-isotropic
scattering scenarios.

Finally, if the PDF pα(α) is asymmetric with respect to
the origin, then it is necessary to consider the complete range
[−π, π). This is especially important if the distribution of the
AOAs of the received signal is concentrated around a mean
AOA α0 that is different from zero, i.e., α0 �= 0. Since the
MMEA-SP (as well as the MMEA) has been designed to cover
the relevant interval [−π, π), we can surely claim that this
method is valid for any given distribution of the AOA.

VI. CONCLUSIONS

In this paper, we presented a modified version of the
MEA for the design of simulation models for non-isotropic
scattering channels. Such a method, which we have called
the MMEA, is quite general and can be applied on any

given distribution of the AOA. From the results presented in
the paper, we can conclude that the MMEA is an adequate
parameter computation method for the SOS-based simulation
of non-isotropic scattering channels. In addition, we explained
how to combine the MMEA with the principle of set parti-
tioning to improve the simulator’s performance and keep the
computational costs low. Such a combination results in the
parameter computation method called MMEA-SP. We have
demonstrated the effectiveness and accuracy of the MMEA-
SP by means of some numerical examples assuming that the
AOA of the received signal follows the von Mises distribution.
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